Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Autors principals: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Format: | info:eu-repo/semantics/article |
Idioma: | English |
Publicat: |
2017
|
Accés en línia: | http://hdl.handle.net/10835/4859 |
Ítems similars
-
Learning Mixtures of Truncated Basis Functions from Data
per: Langseth, Helge, et al.
Publicat: (2017) -
Mixtures of Truncated Basis Functions
per: Langseth, Helge, et al.
Publicat: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
per: Maldonado González, Ana Devaki, et al.
Publicat: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
per: Romero, Vanessa, et al.
Publicat: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
per: Langseth, Helge, et al.
Publicat: (2012)