Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Hlavní autoři: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Médium: | info:eu-repo/semantics/article |
Jazyk: | English |
Vydáno: |
2017
|
On-line přístup: | http://hdl.handle.net/10835/4859 |
Podobné jednotky
-
Learning Mixtures of Truncated Basis Functions from Data
Autor: Langseth, Helge, a další
Vydáno: (2017) -
Mixtures of Truncated Basis Functions
Autor: Langseth, Helge, a další
Vydáno: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
Autor: Maldonado González, Ana Devaki, a další
Vydáno: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
Autor: Romero, Vanessa, a další
Vydáno: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
Autor: Langseth, Helge, a další
Vydáno: (2012)