Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Main Authors: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Format: | info:eu-repo/semantics/article |
Sprog: | English |
Udgivet: |
2017
|
Online adgang: | http://hdl.handle.net/10835/4859 |
Lignende værker
-
Learning Mixtures of Truncated Basis Functions from Data
af: Langseth, Helge, et al.
Udgivet: (2017) -
Mixtures of Truncated Basis Functions
af: Langseth, Helge, et al.
Udgivet: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
af: Maldonado González, Ana Devaki, et al.
Udgivet: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
af: Romero, Vanessa, et al.
Udgivet: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
af: Langseth, Helge, et al.
Udgivet: (2012)