Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Auteurs principaux: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Format: | info:eu-repo/semantics/article |
Langue: | English |
Publié: |
2017
|
Accès en ligne: | http://hdl.handle.net/10835/4859 |
Documents similaires
-
Learning Mixtures of Truncated Basis Functions from Data
par: Langseth, Helge, et autres
Publié: (2017) -
Mixtures of Truncated Basis Functions
par: Langseth, Helge, et autres
Publié: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
par: Maldonado González, Ana Devaki, et autres
Publié: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
par: Romero, Vanessa, et autres
Publié: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
par: Langseth, Helge, et autres
Publié: (2012)