Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Main Authors: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
פורמט: | info:eu-repo/semantics/article |
שפה: | English |
יצא לאור: |
2017
|
גישה מקוונת: | http://hdl.handle.net/10835/4859 |
פריטים דומים
-
Learning Mixtures of Truncated Basis Functions from Data
מאת: Langseth, Helge, et al.
יצא לאור: (2017) -
Mixtures of Truncated Basis Functions
מאת: Langseth, Helge, et al.
יצא לאור: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
מאת: Maldonado González, Ana Devaki, et al.
יצא לאור: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
מאת: Romero, Vanessa, et al.
יצא לאור: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
מאת: Langseth, Helge, et al.
יצא לאור: (2012)