Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Autori principali: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Natura: | info:eu-repo/semantics/article |
Lingua: | English |
Pubblicazione: |
2017
|
Accesso online: | http://hdl.handle.net/10835/4859 |
Documenti analoghi
Documenti analoghi
-
Learning Mixtures of Truncated Basis Functions from Data
di: Langseth, Helge, et al.
Pubblicazione: (2017) -
Mixtures of Truncated Basis Functions
di: Langseth, Helge, et al.
Pubblicazione: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
di: Maldonado González, Ana Devaki, et al.
Pubblicazione: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
di: Romero, Vanessa, et al.
Pubblicazione: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
di: Langseth, Helge, et al.
Pubblicazione: (2012)