Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
主要な著者: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
フォーマット: | info:eu-repo/semantics/article |
言語: | English |
出版事項: |
2017
|
オンライン・アクセス: | http://hdl.handle.net/10835/4859 |
類似資料
-
Learning Mixtures of Truncated Basis Functions from Data
著者:: Langseth, Helge, 等
出版事項: (2017) -
Mixtures of Truncated Basis Functions
著者:: Langseth, Helge, 等
出版事項: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
著者:: Maldonado González, Ana Devaki, 等
出版事項: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
著者:: Romero, Vanessa, 等
出版事項: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
著者:: Langseth, Helge, 等
出版事項: (2012)