Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Главные авторы: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Формат: | info:eu-repo/semantics/article |
Язык: | English |
Опубликовано: |
2017
|
Online-ссылка: | http://hdl.handle.net/10835/4859 |
Схожие документы
-
Learning Mixtures of Truncated Basis Functions from Data
по: Langseth, Helge, и др.
Опубликовано: (2017) -
Mixtures of Truncated Basis Functions
по: Langseth, Helge, и др.
Опубликовано: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
по: Maldonado González, Ana Devaki, и др.
Опубликовано: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
по: Romero, Vanessa, и др.
Опубликовано: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
по: Langseth, Helge, и др.
Опубликовано: (2012)