Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Asıl Yazarlar: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Materyal Türü: | info:eu-repo/semantics/article |
Dil: | English |
Baskı/Yayın Bilgisi: |
2017
|
Online Erişim: | http://hdl.handle.net/10835/4859 |
Benzer Materyaller
-
Learning Mixtures of Truncated Basis Functions from Data
Yazar:: Langseth, Helge, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Mixtures of Truncated Basis Functions
Yazar:: Langseth, Helge, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
Yazar:: Maldonado González, Ana Devaki, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
Yazar:: Romero, Vanessa, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
Yazar:: Langseth, Helge, ve diğerleri
Baskı/Yayın Bilgisi: (2012)