Sobolev orthogonal polynomials: balance and asymptotics
Let μ0 and μ1 be measures supported on an unbounded interval and Sn,λn the extremal varying Sobolev polynomial which minimizes $$<P,P>_\lambda_n=\int P^2 d\mu_0+\lambda_n \int P'^2 d\mu_1, \lambda_n>0$$ in the class of all monic polynomials of degree n. The goal of this paper is twof...
Main Authors: | Alfaro, Manuel, Moreno-Balcázar, Juan José, Peña, Ana, Rezola, M. Luisa |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/4881 |
Similar Items
-
Sobolev Orthogonal Polynomials: Asymptotics and Symbolic Computation
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
The semiclassical-Sobolev orthogonal polynomials: a general approach
by: Costas-Santos, R.S, et al.
Published: (2017) -
Asymptotics for varying discrete Sobolev orthogonal polynomials
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
Classical Sobolev orthogonal polynomials: eigenvalue problem
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
by: Mañas Mañas, Juan Francisco, et al.
Published: (2020)