The semiclassical-Sobolev orthogonal polynomials: a general approach
We say that the polynomial sequence (Q(λ)n) is a semiclassical Sobolev polynomial sequence when it is orthogonal with respect to the inner product <p,r>S=<u,pr>+λ<u,DpDr>, where u is a semiclassical linear functional, D is the differential, the difference or the q--difference ope...
Main Authors: | Costas-Santos, R.S, Moreno-Balcázar, Juan José |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/4882 |
Similar Items
-
Classical Sobolev orthogonal polynomials: eigenvalue problem
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
Sobolev orthogonal polynomials: balance and asymptotics
by: Alfaro, Manuel, et al.
Published: (2017) -
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
by: Mañas Mañas, Juan Francisco, et al.
Published: (2020) -
Sobolev Orthogonal Polynomials: Asymptotics and Symbolic Computation
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
Asymptotics for varying discrete Sobolev orthogonal polynomials
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024)