Fast factorisation of probabilistic potentials and its application to approximate inference in Bayesian networks

We present an efficient procedure for factorising probabilistic potentials represented as probability trees. This new procedure is able to detect some regularities that cannot be captured by existing methods. In cases where an exact decomposition is not achievable, we propose a heuristic way to c...

Full description

Bibliographic Details
Main Authors: Cano, Andrés, Gómez Olmedo, Manuel, Pérez-Ariza, Cora B., Salmerón Cerdán, Antonio
Format: info:eu-repo/semantics/article
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10835/4885
https://doi.org/10.1142/S0218488512500110
Description
Summary:We present an efficient procedure for factorising probabilistic potentials represented as probability trees. This new procedure is able to detect some regularities that cannot be captured by existing methods. In cases where an exact decomposition is not achievable, we propose a heuristic way to carry out approximate factorisations guided by a parameter called factorisation degree, which is fast to compute. We show how this parameter can be used to control the tradeoff between complexity and accuracy in approximate inference algorithms for Bayesian networks.