LEARNING BAYESIAN NETWORKS FOR REGRESSION FROM INCOMPLETE DATABASES*

In this paper we address the problem of inducing Bayesian network models for regression from incomplete databases. We use mixtures of truncated exponentials (MTEs) to represent the joint distribution in the induced networks. We consider two particular Bayesian network structures, the so-called na¨ıv...

Celý popis

Podrobná bibliografie
Hlavní autoři: Fernández, Antonio, Nielsen, Jens D., Salmerón Cerdán, Antonio
Médium: info:eu-repo/semantics/article
Jazyk:English
Vydáno: 2017
Témata:
On-line přístup:http://hdl.handle.net/10835/4887
https://doi.org/10.1142/S0218488510006398