Modelling and Inference with Conditional Gaussian Probabilistic Decision Graphs*
Probabilistic decision graphs (PDGs) are probabilistic graphical models that represent a factorisation of a discrete joint probability distribution using a “decision graph”-like structure over local marginal parameters. The structure of a PDG enables the model to capture some context specific indepe...
Главные авторы: | Nielsen, Jens D., Gámez Martín, José Antonio, Salmerón Cerdán, Antonio |
---|---|
Формат: | info:eu-repo/semantics/article |
Язык: | English |
Опубликовано: |
2017
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10835/4891 https://doi.org/10.1016/j.ijar.2011.09.005 |
Схожие документы
-
Supervised Classification Using Probabilistic Decision Graphs
по: Nielsen, Jens D., и др.
Опубликовано: (2017) -
Fast factorisation of probabilistic potentials and its application to approximate inference in Bayesian networks
по: Cano, Andrés, и др.
Опубликовано: (2017) -
MAP inference in dynamic hybrid Bayesian networks
по: Ramos López, Darío, и др.
Опубликовано: (2017) -
Probabilistic Models with Deep Neural Networks
по: Masegosa Arredondo, Andrés Ramón, и др.
Опубликовано: (2021) -
A Factor-Graph-Based Approach to Vehicle Sideslip Angle Estimation
по: Leanza, Antonio, и др.
Опубликовано: (2021)