Modelling and Inference with Conditional Gaussian Probabilistic Decision Graphs*
Probabilistic decision graphs (PDGs) are probabilistic graphical models that represent a factorisation of a discrete joint probability distribution using a “decision graph”-like structure over local marginal parameters. The structure of a PDG enables the model to capture some context specific indepe...
Главные авторы: | , , |
---|---|
Формат: | info:eu-repo/semantics/article |
Язык: | English |
Опубликовано: |
2017
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10835/4891 https://doi.org/10.1016/j.ijar.2011.09.005 |