Dynamic Importance Sampling in Bayesian Networks Based on Probability Trees
In this paper we introduce a new dynamic importance sampling propagation algorithm for Bayesian networks. Importance sampling is based on using an auxiliary sampling distribution from which a set of con gurations of the variables in the network is drawn, and the performance of the algorithm depends...
Main Authors: | Moral, Serafín, Salmerón Cerdán, Antonio |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/4893 https://doi.org/10.1016/j.ijar.2004.05.005 |
Similar Items
-
New strategies for finding multiplicative decompositions of probability trees
by: Martínez, Irene, et al.
Published: (2017) -
A Monte-Carlo Algorithm for Probabilistic Propagation in Belief Networks based on Importance Sampling and Stratified Simulation Techniques
by: Hernández, Luis D., et al.
Published: (2017) -
Answering queries in hybrid Bayesian networks using importance sampling
by: Fernández, Antonio, et al.
Published: (2017) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
by: Rumí, Rafael, et al.
Published: (2017) -
Fast factorisation of probabilistic potentials and its application to approximate inference in Bayesian networks
by: Cano, Andrés, et al.
Published: (2017)