Dynamic Importance Sampling in Bayesian Networks Based on Probability Trees
In this paper we introduce a new dynamic importance sampling propagation algorithm for Bayesian networks. Importance sampling is based on using an auxiliary sampling distribution from which a set of con gurations of the variables in the network is drawn, and the performance of the algorithm depends...
主要な著者: | Moral, Serafín, Salmerón Cerdán, Antonio |
---|---|
フォーマット: | info:eu-repo/semantics/article |
言語: | English |
出版事項: |
2017
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10835/4893 https://doi.org/10.1016/j.ijar.2004.05.005 |
類似資料
-
New strategies for finding multiplicative decompositions of probability trees
著者:: Martínez, Irene, 等
出版事項: (2017) -
A Monte-Carlo Algorithm for Probabilistic Propagation in Belief Networks based on Importance Sampling and Stratified Simulation Techniques
著者:: Hernández, Luis D., 等
出版事項: (2017) -
Answering queries in hybrid Bayesian networks using importance sampling
著者:: Fernández, Antonio, 等
出版事項: (2017) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
著者:: Rumí, Rafael, 等
出版事項: (2017) -
Fast factorisation of probabilistic potentials and its application to approximate inference in Bayesian networks
著者:: Cano, Andrés, 等
出版事項: (2017)