Learning hybrid Bayesian networks using mixtures of truncated exponentials

In this paper we introduce an algorithm for learning hybrid Bayesian networks from data. The result of the algorithm is a network where the conditional distribution for each variable is a mixture of truncated exponentials (MTE), so that no restrictions on the network topology are imposed. The struct...

詳細記述

書誌詳細
主要な著者: Romero, Vanessa, Rumí, Rafael, Salmerón Cerdán, Antonio
フォーマット: info:eu-repo/semantics/article
言語:English
出版事項: 2017
主題:
オンライン・アクセス:http://hdl.handle.net/10835/4898
https://doi.org/10.1016/j.ijar.2005.10.004