A Monte-Carlo Algorithm for Probabilistic Propagation in Belief Networks based on Importance Sampling and Stratified Simulation Techniques

A class of Monte Carlo algorithms for probability propagation in belief networks is given. The simulation is based on a two steps procedure. The first one is a node deletion technique to calculate the ’a posteriori’ distribution on a variable, with the particularity that when exact computations a...

תיאור מלא

מידע ביבליוגרפי
Main Authors: Hernández, Luis D., Moral, Serafín, Salmerón Cerdán, Antonio
פורמט: info:eu-repo/semantics/article
שפה:English
יצא לאור: 2017
נושאים:
גישה מקוונת:http://hdl.handle.net/10835/4899
https://doi.org/10.1016/S0888-613X(97)10004-4