Quasilinear elliptic problems interacting with its asymptotic spectrum

Under suitable assumptions on the coefficients of the matrix A(x,u) and on the nonlinear term f(x,u), we study the quasilinear problem in bounded domains Ω⊂RN−div(A(x,u)∇u)=f(x,u),x∈Ω,u=0,x∈∂Ω.We extend the semilinear results of Landesman–Lazer (J. Math. Mech. 19 (1970) 609) and of Ambrosetti–Prodi...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Arcoya, David, Carmona Tapia, José
Aineistotyyppi: info:eu-repo/semantics/article
Kieli:English
Julkaistu: Elsevier 2012
Aiheet:
Linkit:http://hdl.handle.net/10835/580
_version_ 1789406476798787584
author Arcoya, David
Carmona Tapia, José
author_facet Arcoya, David
Carmona Tapia, José
author_sort Arcoya, David
collection DSpace
description Under suitable assumptions on the coefficients of the matrix A(x,u) and on the nonlinear term f(x,u), we study the quasilinear problem in bounded domains Ω⊂RN−div(A(x,u)∇u)=f(x,u),x∈Ω,u=0,x∈∂Ω.We extend the semilinear results of Landesman–Lazer (J. Math. Mech. 19 (1970) 609) and of Ambrosetti–Prodi (in: A Primer on Nonlinear Analysis, Cambridge University Press, Cambridge, 1993) for resonant problems. The existence of positive solution is also considered extending to the quasilinear case the classical result by Ambrosetti–Rabinowitz (J. Funct. Anal. 14 (1973) 349). In this case, the result is obtained as a corollary of the previous multiplicity result in the Ambrosetti–Prodi framework. Keywords: Quasilinear elliptic equations; Bifurcation theory; Resonance; Jumping nonlinearities
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-580
institution Universidad de Cuenca
language English
publishDate 2012
publisher Elsevier
record_format dspace
spelling oai:repositorio.ual.es:10835-5802023-04-12T19:37:38Z Quasilinear elliptic problems interacting with its asymptotic spectrum Arcoya, David Carmona Tapia, José Mathematics Under suitable assumptions on the coefficients of the matrix A(x,u) and on the nonlinear term f(x,u), we study the quasilinear problem in bounded domains Ω⊂RN−div(A(x,u)∇u)=f(x,u),x∈Ω,u=0,x∈∂Ω.We extend the semilinear results of Landesman–Lazer (J. Math. Mech. 19 (1970) 609) and of Ambrosetti–Prodi (in: A Primer on Nonlinear Analysis, Cambridge University Press, Cambridge, 1993) for resonant problems. The existence of positive solution is also considered extending to the quasilinear case the classical result by Ambrosetti–Rabinowitz (J. Funct. Anal. 14 (1973) 349). In this case, the result is obtained as a corollary of the previous multiplicity result in the Ambrosetti–Prodi framework. Keywords: Quasilinear elliptic equations; Bifurcation theory; Resonance; Jumping nonlinearities 2012-01-03T09:44:46Z 2012-01-03T09:44:46Z 2003-03 info:eu-repo/semantics/article David Arcoya, José Carmona, Quasilinear elliptic problems interacting with its asymptotic spectrum, Nonlinear Analysis: Theory, Methods & Applications, Volume 52, Issue 6, March 2003, Pages 1591-1616, ISSN 0362-546X, 10.1016/S0362-546X(02)00274-2. 0362-546X http://hdl.handle.net/10835/580 en http://www.sciencedirect.com/science/article/pii/S0362546X02002742 info:eu-repo/semantics/openAccess Elsevier
spellingShingle Mathematics
Arcoya, David
Carmona Tapia, José
Quasilinear elliptic problems interacting with its asymptotic spectrum
title Quasilinear elliptic problems interacting with its asymptotic spectrum
title_full Quasilinear elliptic problems interacting with its asymptotic spectrum
title_fullStr Quasilinear elliptic problems interacting with its asymptotic spectrum
title_full_unstemmed Quasilinear elliptic problems interacting with its asymptotic spectrum
title_short Quasilinear elliptic problems interacting with its asymptotic spectrum
title_sort quasilinear elliptic problems interacting with its asymptotic spectrum
topic Mathematics
url http://hdl.handle.net/10835/580
work_keys_str_mv AT arcoyadavid quasilinearellipticproblemsinteractingwithitsasymptoticspectrum
AT carmonatapiajose quasilinearellipticproblemsinteractingwithitsasymptoticspectrum