l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System

Protein immobilization is proving to be an environmentally friendly strategy for manufacturing biochemicals at high yields and low production costs. This work describes the optimization of the so-called “double-racemase hydantoinase process,” a system of four enzymes used to produce optically pure l...

Full description

Bibliographic Details
Main Authors: Rodríguez Alonso, María José, Rodríguez Vico, Felipe, Las Heras Vázquez, Francisco Javier de, Clemente Jiménez, María José
Format: info:eu-repo/semantics/article
Language:English
Published: MDPI 2020
Subjects:
Online Access:http://hdl.handle.net/10835/7416
_version_ 1789406729591586816
author Rodríguez Alonso, María José
Rodríguez Vico, Felipe
Las Heras Vázquez, Francisco Javier de
Clemente Jiménez, María José
author_facet Rodríguez Alonso, María José
Rodríguez Vico, Felipe
Las Heras Vázquez, Francisco Javier de
Clemente Jiménez, María José
author_sort Rodríguez Alonso, María José
collection DSpace
description Protein immobilization is proving to be an environmentally friendly strategy for manufacturing biochemicals at high yields and low production costs. This work describes the optimization of the so-called “double-racemase hydantoinase process,” a system of four enzymes used to produce optically pure l-amino acids from a racemic mixture of hydantoins. The four proteins were immobilized separately, and, based on their specific activity, the optimal whole relation was determined. The first enzyme, d,l-hydantoinase, preferably hydrolyzes d-hydantoins from d,l-hydantoins to N-carbamoyl-d-amino acids. The remaining l-hydantoins are racemized by the second enzyme, hydantoin racemase, and continue supplying substrate d-hydantoins to the first enzyme. N-carbamoyl-d-amino acid is racemized in turn to N-carbamoyl-l-amino acid by the third enzyme, carbamoyl racemase. Finally, the N-carbamoyl-l-amino acid is transformed to l-amino acid by the fourth enzyme, l-carbamoylase. Therefore, the product of one enzyme is the substrate of another. Perfect coordination of the four activities is necessary to avoid the accumulation of reaction intermediates and to achieve an adequate rate for commercial purposes. The system has shown a broad pH optimum of 7–9, with a maximum activity at 8 and an optimal temperature of 60 °C. Comparison of the immobilized system with the free protein system showed that the reaction velocity increased for the production of norvaline, norleucine, ABA, and homophenylalanine, while it decreased for l-valine and remained unchanged for l-methionine.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-7416
institution Universidad de Cuenca
language English
publishDate 2020
publisher MDPI
record_format dspace
spelling oai:repositorio.ual.es:10835-74162023-04-12T19:48:26Z l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System Rodríguez Alonso, María José Rodríguez Vico, Felipe Las Heras Vázquez, Francisco Javier de Clemente Jiménez, María José protein immobilization enzymatic cascade l-amino acids Protein immobilization is proving to be an environmentally friendly strategy for manufacturing biochemicals at high yields and low production costs. This work describes the optimization of the so-called “double-racemase hydantoinase process,” a system of four enzymes used to produce optically pure l-amino acids from a racemic mixture of hydantoins. The four proteins were immobilized separately, and, based on their specific activity, the optimal whole relation was determined. The first enzyme, d,l-hydantoinase, preferably hydrolyzes d-hydantoins from d,l-hydantoins to N-carbamoyl-d-amino acids. The remaining l-hydantoins are racemized by the second enzyme, hydantoin racemase, and continue supplying substrate d-hydantoins to the first enzyme. N-carbamoyl-d-amino acid is racemized in turn to N-carbamoyl-l-amino acid by the third enzyme, carbamoyl racemase. Finally, the N-carbamoyl-l-amino acid is transformed to l-amino acid by the fourth enzyme, l-carbamoylase. Therefore, the product of one enzyme is the substrate of another. Perfect coordination of the four activities is necessary to avoid the accumulation of reaction intermediates and to achieve an adequate rate for commercial purposes. The system has shown a broad pH optimum of 7–9, with a maximum activity at 8 and an optimal temperature of 60 °C. Comparison of the immobilized system with the free protein system showed that the reaction velocity increased for the production of norvaline, norleucine, ABA, and homophenylalanine, while it decreased for l-valine and remained unchanged for l-methionine. 2020-01-16T12:29:02Z 2020-01-16T12:29:02Z 2017-06-20 info:eu-repo/semantics/article 2073-4344 http://hdl.handle.net/10835/7416 en https://www.mdpi.com/2073-4344/7/6/192 Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess MDPI
spellingShingle protein immobilization
enzymatic cascade
l-amino acids
Rodríguez Alonso, María José
Rodríguez Vico, Felipe
Las Heras Vázquez, Francisco Javier de
Clemente Jiménez, María José
l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System
title l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System
title_full l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System
title_fullStr l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System
title_full_unstemmed l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System
title_short l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System
title_sort l-amino acid production by a immobilized double-racemase hydantoinase process: improvement and comparison with a free protein system
topic protein immobilization
enzymatic cascade
l-amino acids
url http://hdl.handle.net/10835/7416
work_keys_str_mv AT rodriguezalonsomariajose laminoacidproductionbyaimmobilizeddoubleracemasehydantoinaseprocessimprovementandcomparisonwithafreeproteinsystem
AT rodriguezvicofelipe laminoacidproductionbyaimmobilizeddoubleracemasehydantoinaseprocessimprovementandcomparisonwithafreeproteinsystem
AT lasherasvazquezfranciscojavierde laminoacidproductionbyaimmobilizeddoubleracemasehydantoinaseprocessimprovementandcomparisonwithafreeproteinsystem
AT clementejimenezmariajose laminoacidproductionbyaimmobilizeddoubleracemasehydantoinaseprocessimprovementandcomparisonwithafreeproteinsystem