Cost-Sensitive Variable Selection for Multi-Class Imbalanced Datasets Using Bayesian Networks

Multi-class classification in imbalanced datasets is a challenging problem. In these cases, common validation metrics (such as accuracy or recall) are often not suitable. In many of these problems, often real-world problems related to health, some classification errors may be tolerated, whereas othe...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Ramos-López, Darío, Maldonado, Ana D.
Aineistotyyppi: info:eu-repo/semantics/article
Kieli:English
Julkaistu: MDPI 2021
Aiheet:
Linkit:http://hdl.handle.net/10835/9318