Role of Microalgae in the Recovery of Nutrients from Pig Manure

Animal production inevitably causes the emission of greenhouse gases and the generation of large amounts of slurry, both representing a serious environmental problem. Photosynthetic microorganisms such as microalgae and cyanobacteria have been proposed as alternative strategies to bioremediate agric...

Full description

Bibliographic Details
Main Authors: Sánchez Zurano, Ana, Ciardi, Martina, Lafarga, Tomás, Fernández Sevilla, José María, Bermejo Román, Ruperto, Molina Grima, Emilio
Format: info:eu-repo/semantics/article
Language:English
Published: MDPI 2021
Subjects:
Online Access:http://hdl.handle.net/10835/9509
Description
Summary:Animal production inevitably causes the emission of greenhouse gases and the generation of large amounts of slurry, both representing a serious environmental problem. Photosynthetic microorganisms such as microalgae and cyanobacteria have been proposed as alternative strategies to bioremediate agricultural waste while consuming carbon dioxide and producing valuable biomass. The current study assessed the potential of the microalga Scenedesmus sp. to remove nutrients from piggery wastewater (PWW) and the influence of the microalga on the microbial consortia. Maximum N-NH4+ consumption was 55.3 ± 3.7 mg·L−1·day−1 while P-PO43− removal rates were in the range 0.1–1.9 mg·L−1·day−1. N-NH4+ removal was partially caused by the action of nitrifying bacteria, which led to the production of N-NO3−. N-NO3− production values where lower when microalgae were more active. This work demonstrated that the photosynthetic activity of microalgae allows us to increase nutrient removal rates from PWW and to reduce the coliform bacterial load of the effluent, minimising both their environmental impact and health risks. Microalgae assimilated part of the N-NH4+ present in the media to produce biomass and did not to convert it into N-NO3− as in traditional processes.