Mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols

The abuse of chemical fertilizers in recent decades has led the promotion of less harmful alternatives, such as compost or aqueous extracts obtained from it. Therefore, it is essential to develop liquid biofertilizers, which in addition of being stable and useful for fertigation and foliar applica...

Full description

Bibliographic Details
Main Authors: Lerma-Moliz, R., López-González, J.A., Suárez-Estrella, F., Martínez-Gallardo, M.R., Jurado, M.M., Estrella-González, M.J., Toribio, A.J., Jiménez, R., López, M.J.
Format: info:eu-repo/semantics/article
Language:English
Published: 2024
Online Access:http://hdl.handle.net/10835/14974
https://doi.org/10.1016/j.scitotenv.2023.162288
_version_ 1789406617005981696
author Lerma-Moliz, R.
López-González, J.A.
Suárez-Estrella, F.
Martínez-Gallardo, M.R.
Jurado, M.M.
Estrella-González, M.J.
Toribio, A.J.
Jiménez, R.
López, M.J.
author_facet Lerma-Moliz, R.
López-González, J.A.
Suárez-Estrella, F.
Martínez-Gallardo, M.R.
Jurado, M.M.
Estrella-González, M.J.
Toribio, A.J.
Jiménez, R.
López, M.J.
author_sort Lerma-Moliz, R.
collection DSpace
description The abuse of chemical fertilizers in recent decades has led the promotion of less harmful alternatives, such as compost or aqueous extracts obtained from it. Therefore, it is essential to develop liquid biofertilizers, which in addition of being stable and useful for fertigation and foliar application in intensive agriculture had a remarkable phytostimulant extracts. For this purpose, a collection of aqueous extracts was obtained by applying four different Compost Extraction Protocols (CEP1, CEP2, CEP3, CEP4) in terms of incubation time, temperature and agitation of compost samples from agri-food waste, olive mill waste, sewage sludge and vegetable waste. Subsequently, a physicochemical characterization of the obtained set was performed in which pH, electrical conductivity and Total Organic Carbon (TOC) were measured. In addition, a biological characterization was also carried out by calculating the Germination Index (GI) and determining the Biological Oxygen Demand (BOD5). Furthermore, functional diversity was studied using the Biolog EcoPlates technique. The results obtained confirmed the great heterogeneity of the selected raw materials. However, it was observed that the less aggressive treatments in terms of temperature and incubation time, such as CEP1 (48 h, room temperature (RT)) or CEP4 (14 days, RT), provided aqueous compost extracts with better phytostimulant characteristics than the starting composts. It was even possible to find a compost extraction protocol that maximize the beneficial effects of compost. This was the case of CEP1, which improved the GI and reduced the phytotoxicity in most of the raw materials analyzed. Therefore, the use of this type of liquid organic amendment could mitigate the phytotoxic effect of several composts being a good alternative to the use of chemical fertilizers.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-14974
institution Universidad de Cuenca
language English
publishDate 2024
record_format dspace
spelling oai:repositorio.ual.es:10835-149742024-01-08T15:01:08Z Mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols Lerma-Moliz, R. López-González, J.A. Suárez-Estrella, F. Martínez-Gallardo, M.R. Jurado, M.M. Estrella-González, M.J. Toribio, A.J. Jiménez, R. López, M.J. The abuse of chemical fertilizers in recent decades has led the promotion of less harmful alternatives, such as compost or aqueous extracts obtained from it. Therefore, it is essential to develop liquid biofertilizers, which in addition of being stable and useful for fertigation and foliar application in intensive agriculture had a remarkable phytostimulant extracts. For this purpose, a collection of aqueous extracts was obtained by applying four different Compost Extraction Protocols (CEP1, CEP2, CEP3, CEP4) in terms of incubation time, temperature and agitation of compost samples from agri-food waste, olive mill waste, sewage sludge and vegetable waste. Subsequently, a physicochemical characterization of the obtained set was performed in which pH, electrical conductivity and Total Organic Carbon (TOC) were measured. In addition, a biological characterization was also carried out by calculating the Germination Index (GI) and determining the Biological Oxygen Demand (BOD5). Furthermore, functional diversity was studied using the Biolog EcoPlates technique. The results obtained confirmed the great heterogeneity of the selected raw materials. However, it was observed that the less aggressive treatments in terms of temperature and incubation time, such as CEP1 (48 h, room temperature (RT)) or CEP4 (14 days, RT), provided aqueous compost extracts with better phytostimulant characteristics than the starting composts. It was even possible to find a compost extraction protocol that maximize the beneficial effects of compost. This was the case of CEP1, which improved the GI and reduced the phytotoxicity in most of the raw materials analyzed. Therefore, the use of this type of liquid organic amendment could mitigate the phytotoxic effect of several composts being a good alternative to the use of chemical fertilizers. 2024-01-08T15:01:08Z 2024-01-08T15:01:08Z 2023-02-16 info:eu-repo/semantics/article 0048-9697 http://hdl.handle.net/10835/14974 https://doi.org/10.1016/j.scitotenv.2023.162288 en info:eu-repo/semantics/openAccess
spellingShingle Lerma-Moliz, R.
López-González, J.A.
Suárez-Estrella, F.
Martínez-Gallardo, M.R.
Jurado, M.M.
Estrella-González, M.J.
Toribio, A.J.
Jiménez, R.
López, M.J.
Mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols
title Mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols
title_full Mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols
title_fullStr Mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols
title_full_unstemmed Mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols
title_short Mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols
title_sort mitigation of phytotoxic effect of compost by application of optimized aqueous extraction protocols
url http://hdl.handle.net/10835/14974
https://doi.org/10.1016/j.scitotenv.2023.162288
work_keys_str_mv AT lermamolizr mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols
AT lopezgonzalezja mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols
AT suarezestrellaf mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols
AT martinezgallardomr mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols
AT juradomm mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols
AT estrellagonzalezmj mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols
AT toribioaj mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols
AT jimenezr mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols
AT lopezmj mitigationofphytotoxiceffectofcompostbyapplicationofoptimizedaqueousextractionprotocols