Differential operator for discrete Gegenbauer--Sobolev orthogonal polynomials: eigenvalues and asymptotics
We consider the following discrete Sobolev inner product involving the Gegenbauer weight $$(f,g)_S:=\int_{-1}^1f(x)g(x)(1-x^2)^{\alpha}dx+M\big[f^{(j)}(-1)g^{(j)}(-1)+f^{(j)}(1)g^{(j)}(1)\big],$$ where $\alpha>-1,$ $j\in \mathbb{N}\cup \{0\},$ and $M>0.$ Our main objective is to calculat...
Main Authors: | , , , |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/15245 |