Differential operator for discrete Gegenbauer--Sobolev orthogonal polynomials: eigenvalues and asymptotics

We consider the following discrete Sobolev inner product involving the Gegenbauer weight $$(f,g)_S:=\int_{-1}^1f(x)g(x)(1-x^2)^{\alpha}dx+M\big[f^{(j)}(-1)g^{(j)}(-1)+f^{(j)}(1)g^{(j)}(1)\big],$$ where $\alpha>-1,$ $j\in \mathbb{N}\cup \{0\},$ and $M>0.$ Our main objective is to calculat...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Littlejohn, Lance L., Mañas Mañas, Juan Francisco, Moreno Balcázar, Juan José, Wellman, Richard
Materialtyp: info:eu-repo/semantics/article
Språk:English
Publicerad: 2024
Ämnen:
Länkar:http://hdl.handle.net/10835/15245