Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
In the last years, mixtures of truncated exponentials (MTEs) have received much attention within the context of probabilistic graphical models, as they provide a framework for hybrid Bayesian networks which is compatible with standard inference algorithms and no restriction on the structure of the n...
Asıl Yazarlar: | Fernández, Antonio, Nielsen, Jens D., Salmerón Cerdán, Antonio |
---|---|
Materyal Türü: | info:eu-repo/semantics/report |
Dil: | English |
Baskı/Yayın Bilgisi: |
2012
|
Online Erişim: | http://hdl.handle.net/10835/1550 |
Benzer Materyaller
-
Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
Yazar:: Gámez Martín, José Antonio, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
Selective naive Bayes predictor with mixtures of truncated exponentials
Yazar:: Morales, María, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
Estimating mixtures of truncated exponentials from data
Yazar:: Moral, Serafín, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
Parameter Estimation in Mixtures of Truncated Exponentials
Yazar:: Langseth, Helge, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
Yazar:: Romero, Vanessa, ve diğerleri
Baskı/Yayın Bilgisi: (2012)