Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
In the last years, mixtures of truncated exponentials (MTEs) have received much attention within the context of probabilistic graphical models, as they provide a framework for hybrid Bayesian networks which is compatible with standard inference algorithms and no restriction on the structure of the n...
Κύριοι συγγραφείς: | Fernández, Antonio, Nielsen, Jens D., Salmerón Cerdán, Antonio |
---|---|
Μορφή: | info:eu-repo/semantics/report |
Γλώσσα: | English |
Έκδοση: |
2012
|
Διαθέσιμο Online: | http://hdl.handle.net/10835/1550 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
ανά: Gámez Martín, José Antonio, κ.ά.
Έκδοση: (2012) -
Selective naive Bayes predictor with mixtures of truncated exponentials
ανά: Morales, María, κ.ά.
Έκδοση: (2012) -
Estimating mixtures of truncated exponentials from data
ανά: Moral, Serafín, κ.ά.
Έκδοση: (2012) -
Parameter Estimation in Mixtures of Truncated Exponentials
ανά: Langseth, Helge, κ.ά.
Έκδοση: (2012) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
ανά: Romero, Vanessa, κ.ά.
Έκδοση: (2012)