Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
In the last years, mixtures of truncated exponentials (MTEs) have received much attention within the context of probabilistic graphical models, as they provide a framework for hybrid Bayesian networks which is compatible with standard inference algorithms and no restriction on the structure of the n...
Autors principals: | Fernández, Antonio, Nielsen, Jens D., Salmerón Cerdán, Antonio |
---|---|
Format: | info:eu-repo/semantics/report |
Idioma: | English |
Publicat: |
2012
|
Accés en línia: | http://hdl.handle.net/10835/1550 |
Ítems similars
-
Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
per: Gámez Martín, José Antonio, et al.
Publicat: (2012) -
Selective naive Bayes predictor with mixtures of truncated exponentials
per: Morales, María, et al.
Publicat: (2012) -
Estimating mixtures of truncated exponentials from data
per: Moral, Serafín, et al.
Publicat: (2012) -
Parameter Estimation in Mixtures of Truncated Exponentials
per: Langseth, Helge, et al.
Publicat: (2012) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
per: Romero, Vanessa, et al.
Publicat: (2012)