Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
In the last years, mixtures of truncated exponentials (MTEs) have received much attention within the context of probabilistic graphical models, as they provide a framework for hybrid Bayesian networks which is compatible with standard inference algorithms and no restriction on the structure of the n...
Hlavní autoři: | Fernández, Antonio, Nielsen, Jens D., Salmerón Cerdán, Antonio |
---|---|
Médium: | info:eu-repo/semantics/report |
Jazyk: | English |
Vydáno: |
2012
|
On-line přístup: | http://hdl.handle.net/10835/1550 |
Podobné jednotky
-
Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
Autor: Gámez Martín, José Antonio, a další
Vydáno: (2012) -
Selective naive Bayes predictor with mixtures of truncated exponentials
Autor: Morales, María, a další
Vydáno: (2012) -
Estimating mixtures of truncated exponentials from data
Autor: Moral, Serafín, a další
Vydáno: (2012) -
Parameter Estimation in Mixtures of Truncated Exponentials
Autor: Langseth, Helge, a další
Vydáno: (2012) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
Autor: Romero, Vanessa, a další
Vydáno: (2012)