Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
In the last years, mixtures of truncated exponentials (MTEs) have received much attention within the context of probabilistic graphical models, as they provide a framework for hybrid Bayesian networks which is compatible with standard inference algorithms and no restriction on the structure of the n...
Hoofdauteurs: | Fernández, Antonio, Nielsen, Jens D., Salmerón Cerdán, Antonio |
---|---|
Formaat: | info:eu-repo/semantics/report |
Taal: | English |
Gepubliceerd in: |
2012
|
Online toegang: | http://hdl.handle.net/10835/1550 |
Gelijkaardige items
-
Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
door: Gámez Martín, José Antonio, et al.
Gepubliceerd in: (2012) -
Selective naive Bayes predictor with mixtures of truncated exponentials
door: Morales, María, et al.
Gepubliceerd in: (2012) -
Estimating mixtures of truncated exponentials from data
door: Moral, Serafín, et al.
Gepubliceerd in: (2012) -
Parameter Estimation in Mixtures of Truncated Exponentials
door: Langseth, Helge, et al.
Gepubliceerd in: (2012) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
door: Romero, Vanessa, et al.
Gepubliceerd in: (2012)