Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...
Κύριοι συγγραφείς: | Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio |
---|---|
Μορφή: | info:eu-repo/semantics/report |
Γλώσσα: | English |
Έκδοση: |
2012
|
Διαθέσιμο Online: | http://hdl.handle.net/10835/1555 |
Παρόμοια τεκμήρια
-
Selective naive Bayes predictor with mixtures of truncated exponentials
ανά: Morales, María, κ.ά.
Έκδοση: (2012) -
Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
ανά: Fernández, Antonio, κ.ά.
Έκδοση: (2012) -
Estimating mixtures of truncated exponentials from data
ανά: Moral, Serafín, κ.ά.
Έκδοση: (2012) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
ανά: Rumí, Rafael, κ.ά.
Έκδοση: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
ανά: Langseth, Helge, κ.ά.
Έκδοση: (2012)