Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...
Hoofdauteurs: | Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio |
---|---|
Formaat: | info:eu-repo/semantics/report |
Taal: | English |
Gepubliceerd in: |
2012
|
Online toegang: | http://hdl.handle.net/10835/1555 |
Gelijkaardige items
-
Selective naive Bayes predictor with mixtures of truncated exponentials
door: Morales, María, et al.
Gepubliceerd in: (2012) -
Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
door: Fernández, Antonio, et al.
Gepubliceerd in: (2012) -
Estimating mixtures of truncated exponentials from data
door: Moral, Serafín, et al.
Gepubliceerd in: (2012) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
door: Rumí, Rafael, et al.
Gepubliceerd in: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
door: Langseth, Helge, et al.
Gepubliceerd in: (2012)