Shannon entropy of symmetric Pollaczek polynomials

We discuss the asymptotic behavior (as $n\to \infty$) of the entropic integrals $$ E_n= - \int_{-1}^1 \log \big(p^2_n(x) \big) p^2_n(x) w(x) d x, $$ and $$ F_n = -\int_{-1}^1 \log (p_n^2(x)w(x)) p_n^2(x) w(x) dx, $$ when $w$ is the symmetric Pollaczek weight on $[-1,1]$ with main parameter $\lambda...

Full description

Bibliographic Details
Main Authors: Martínez-Finkelshtein, Andrei, Sánchez-Lara, J. F.
Format: info:eu-repo/semantics/article
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10835/1635