Shannon entropy of symmetric Pollaczek polynomials

We discuss the asymptotic behavior (as $n\to \infty$) of the entropic integrals $$ E_n= - \int_{-1}^1 \log \big(p^2_n(x) \big) p^2_n(x) w(x) d x, $$ and $$ F_n = -\int_{-1}^1 \log (p_n^2(x)w(x)) p_n^2(x) w(x) dx, $$ when $w$ is the symmetric Pollaczek weight on $[-1,1]$ with main parameter $\lambda...

Full description

Bibliographic Details
Main Authors: Martínez-Finkelshtein, Andrei, Sánchez-Lara, J. F.
Format: info:eu-repo/semantics/article
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10835/1635
_version_ 1789406473235726336
author Martínez-Finkelshtein, Andrei
Sánchez-Lara, J. F.
author_facet Martínez-Finkelshtein, Andrei
Sánchez-Lara, J. F.
author_sort Martínez-Finkelshtein, Andrei
collection DSpace
description We discuss the asymptotic behavior (as $n\to \infty$) of the entropic integrals $$ E_n= - \int_{-1}^1 \log \big(p^2_n(x) \big) p^2_n(x) w(x) d x, $$ and $$ F_n = -\int_{-1}^1 \log (p_n^2(x)w(x)) p_n^2(x) w(x) dx, $$ when $w$ is the symmetric Pollaczek weight on $[-1,1]$ with main parameter $\lambda\geq 1$, and $p_n$ is the corresponding orthonormal polynomial of degree $n$. It is well known that $w$ does not belong to the Szeg\H{o} class, which implies in particular that $E_n\to -\infty$. For this sequence we find the first two terms of the asymptotic expansion. Furthermore, we show that $F_n \to \log (\pi)-1$, proving that this ``universal behavior'' extends beyond the Szeg\H{o} class. The asymptotics of $E_n$ has also a curious interpretation in terms of the mutual energy of two relevant sequences of measures associated with $p_n$'s.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-1635
institution Universidad de Cuenca
language English
publishDate 2012
record_format dspace
spelling oai:repositorio.ual.es:10835-16352023-04-12T19:37:40Z Shannon entropy of symmetric Pollaczek polynomials Martínez-Finkelshtein, Andrei Sánchez-Lara, J. F. Polinomios simétricos Pollaczek Entropía de Shannon Comportamiento asintótico Integrales entrópicas Shannon entropy Symmetric Pollaczek polynomials Asymptotic behavior Entropic integrals We discuss the asymptotic behavior (as $n\to \infty$) of the entropic integrals $$ E_n= - \int_{-1}^1 \log \big(p^2_n(x) \big) p^2_n(x) w(x) d x, $$ and $$ F_n = -\int_{-1}^1 \log (p_n^2(x)w(x)) p_n^2(x) w(x) dx, $$ when $w$ is the symmetric Pollaczek weight on $[-1,1]$ with main parameter $\lambda\geq 1$, and $p_n$ is the corresponding orthonormal polynomial of degree $n$. It is well known that $w$ does not belong to the Szeg\H{o} class, which implies in particular that $E_n\to -\infty$. For this sequence we find the first two terms of the asymptotic expansion. Furthermore, we show that $F_n \to \log (\pi)-1$, proving that this ``universal behavior'' extends beyond the Szeg\H{o} class. The asymptotics of $E_n$ has also a curious interpretation in terms of the mutual energy of two relevant sequences of measures associated with $p_n$'s. 2012-08-03T08:25:59Z 2012-08-03T08:25:59Z 2007 info:eu-repo/semantics/article http://hdl.handle.net/10835/1635 en info:eu-repo/semantics/openAccess Journal of Approximation Theory Vol. 145 Nº 1 (2007)
spellingShingle Polinomios simétricos Pollaczek
Entropía de Shannon
Comportamiento asintótico
Integrales entrópicas
Shannon entropy
Symmetric Pollaczek polynomials
Asymptotic behavior
Entropic integrals
Martínez-Finkelshtein, Andrei
Sánchez-Lara, J. F.
Shannon entropy of symmetric Pollaczek polynomials
title Shannon entropy of symmetric Pollaczek polynomials
title_full Shannon entropy of symmetric Pollaczek polynomials
title_fullStr Shannon entropy of symmetric Pollaczek polynomials
title_full_unstemmed Shannon entropy of symmetric Pollaczek polynomials
title_short Shannon entropy of symmetric Pollaczek polynomials
title_sort shannon entropy of symmetric pollaczek polynomials
topic Polinomios simétricos Pollaczek
Entropía de Shannon
Comportamiento asintótico
Integrales entrópicas
Shannon entropy
Symmetric Pollaczek polynomials
Asymptotic behavior
Entropic integrals
url http://hdl.handle.net/10835/1635
work_keys_str_mv AT martinezfinkelshteinandrei shannonentropyofsymmetricpollaczekpolynomials
AT sanchezlarajf shannonentropyofsymmetricpollaczekpolynomials