Shannon entropy of symmetric Pollaczek polynomials
We discuss the asymptotic behavior (as $n\to \infty$) of the entropic integrals $$ E_n= - \int_{-1}^1 \log \big(p^2_n(x) \big) p^2_n(x) w(x) d x, $$ and $$ F_n = -\int_{-1}^1 \log (p_n^2(x)w(x)) p_n^2(x) w(x) dx, $$ when $w$ is the symmetric Pollaczek weight on $[-1,1]$ with main parameter $\lambda...
Main Authors: | Martínez-Finkelshtein, Andrei, Sánchez-Lara, J. F. |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/1635 |
Similar Items
-
Discrete entropies of orthogonal polynomials
by: Aptekarev, A. I., et al.
Published: (2012) -
On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
by: Martínez-Finkelshtein, Andrei, et al.
Published: (2012) -
Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class.
by: Beckermann, B., et al.
Published: (2012) -
Asymptotics of the L2 norm of derivatives of OPUC
by: Martínez-Finkelshtein, Andrei, et al.
Published: (2012) -
Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle
by: Martínez-Finkelshtein, Andrei, et al.
Published: (2012)