Orthogonality of Jacobi polynomials with general parameters.

In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to ei...

詳細記述

書誌詳細
主要な著者: Kuijlaars, A. B. J., Martínez-Finkelshtein, Andrei, Orive, R.
フォーマット: info:eu-repo/semantics/article
言語:English
出版事項: 2012
主題:
オンライン・アクセス:http://hdl.handle.net/10835/1636
その他の書誌記述
要約:In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to either full orthogonality conditions on a single contour in the plane, or to multiple orthogonality conditions on a number of contours in the plane. In all cases we show that the orthogonality conditions characterize the Jacobi polynomial $P_n^{(\alpha, \beta)}$ of degree $n$ up to a constant factor.