Computation of the entropy of polynomials orthogonal on an interval.

We give an effective method to compute the entropy for polynomials orthogonal on a segment of the real axis that uses as input data only the coefficients of the recurrence relation satisfied by these polynomials. This algorithm is based on a series expression for the mutual energy of two probability...

Полное описание

Библиографические подробности
Главные авторы: Buyarov, V., Dehesa, J. S., Martínez-Finkelshtein, Andrei, Sánchez-Lara, J. F.
Формат: info:eu-repo/semantics/article
Язык:English
Опубликовано: 2012
Предметы:
Online-ссылка:http://hdl.handle.net/10835/1639
Описание
Итог:We give an effective method to compute the entropy for polynomials orthogonal on a segment of the real axis that uses as input data only the coefficients of the recurrence relation satisfied by these polynomials. This algorithm is based on a series expression for the mutual energy of two probability measures naturally connected with the polynomials. The particular case of Gegenbauer polynomials is analyzed in detail. These results are applied also to the computation of the entropy of spherical harmonics, important for the study of the entropic uncertainty relations as well as the spatial complexity of physical systems in central potentials.