Computation of the entropy of polynomials orthogonal on an interval.
We give an effective method to compute the entropy for polynomials orthogonal on a segment of the real axis that uses as input data only the coefficients of the recurrence relation satisfied by these polynomials. This algorithm is based on a series expression for the mutual energy of two probability...
Κύριοι συγγραφείς: | Buyarov, V., Dehesa, J. S., Martínez-Finkelshtein, Andrei, Sánchez-Lara, J. F. |
---|---|
Μορφή: | info:eu-repo/semantics/article |
Γλώσσα: | English |
Έκδοση: |
2012
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10835/1639 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Orthogonality of Jacobi polynomials with general parameters.
ανά: Kuijlaars, A. B. J., κ.ά.
Έκδοση: (2012) -
Discrete entropies of orthogonal polynomials
ανά: Aptekarev, A. I., κ.ά.
Έκδοση: (2012) -
Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class.
ανά: Beckermann, B., κ.ά.
Έκδοση: (2012) -
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
ανά: Grünbaum, F. Alberto, κ.ά.
Έκδοση: (2012) -
Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle
ανά: Martínez-Finkelshtein, Andrei, κ.ά.
Έκδοση: (2012)