Parallelization of the PC Algorithm
This paper describes a parallel version of the PC algorithm for learning the structure of a Bayesian network from data. The PC algorithm is a constraint-based algorithm consisting of fi ve steps where the first step is to perform a set of (conditional) independence tests while the remaining four...
主要な著者: | Madsen, Anders L., Jensen, Frank, Salmerón Cerdán, Antonio, Langseth, Helge, Nielsen, Thomas D. |
---|---|
フォーマット: | info:eu-repo/semantics/article |
言語: | English |
出版事項: |
2017
|
オンライン・アクセス: | http://hdl.handle.net/10835/4856 |
類似資料
-
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block Designs
著者:: Salmerón Cerdán, Antonio, 等
出版事項: (2017) -
Parallel Importance Sampling in Conditional Linear Gaussian Networks
著者:: Salmerón Cerdán, Antonio, 等
出版事項: (2017) -
A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs
著者:: Madsen, Anders L., 等
出版事項: (2017) -
MPE inference in Conditional Linear Gaussian Networks
著者:: Salmerón Cerdán, Antonio, 等
出版事項: (2017) - Fundamentals of parallel processing