Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Hauptverfasser: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Format: | info:eu-repo/semantics/article |
Sprache: | English |
Veröffentlicht: |
2017
|
Online Zugang: | http://hdl.handle.net/10835/4859 |
Ähnliche Einträge
Ähnliche Einträge
-
Learning Mixtures of Truncated Basis Functions from Data
von: Langseth, Helge, et al.
Veröffentlicht: (2017) -
Mixtures of Truncated Basis Functions
von: Langseth, Helge, et al.
Veröffentlicht: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
von: Maldonado González, Ana Devaki, et al.
Veröffentlicht: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
von: Romero, Vanessa, et al.
Veröffentlicht: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
von: Langseth, Helge, et al.
Veröffentlicht: (2012)