Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Hoofdauteurs: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Formaat: | info:eu-repo/semantics/article |
Taal: | English |
Gepubliceerd in: |
2017
|
Online toegang: | http://hdl.handle.net/10835/4859 |
Gelijkaardige items
-
Learning Mixtures of Truncated Basis Functions from Data
door: Langseth, Helge, et al.
Gepubliceerd in: (2017) -
Mixtures of Truncated Basis Functions
door: Langseth, Helge, et al.
Gepubliceerd in: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
door: Maldonado González, Ana Devaki, et al.
Gepubliceerd in: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
door: Romero, Vanessa, et al.
Gepubliceerd in: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
door: Langseth, Helge, et al.
Gepubliceerd in: (2012)