Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning...
Principais autores: | Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio, Langseth, Helge |
---|---|
Formato: | info:eu-repo/semantics/article |
Idioma: | English |
Publicado em: |
2017
|
Acesso em linha: | http://hdl.handle.net/10835/4859 |
Registros relacionados
-
Learning Mixtures of Truncated Basis Functions from Data
por: Langseth, Helge, et al.
Publicado em: (2017) -
Mixtures of Truncated Basis Functions
por: Langseth, Helge, et al.
Publicado em: (2017) -
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
por: Maldonado González, Ana Devaki, et al.
Publicado em: (2023) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
por: Romero, Vanessa, et al.
Publicado em: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
por: Langseth, Helge, et al.
Publicado em: (2012)