LEARNING BAYESIAN NETWORKS FOR REGRESSION FROM INCOMPLETE DATABASES*

In this paper we address the problem of inducing Bayesian network models for regression from incomplete databases. We use mixtures of truncated exponentials (MTEs) to represent the joint distribution in the induced networks. We consider two particular Bayesian network structures, the so-called na¨ıv...

Cijeli opis

Bibliografski detalji
Glavni autori: Fernández, Antonio, Nielsen, Jens D., Salmerón Cerdán, Antonio
Format: info:eu-repo/semantics/article
Jezik:English
Izdano: 2017
Teme:
Online pristup:http://hdl.handle.net/10835/4887
https://doi.org/10.1142/S0218488510006398