LEARNING BAYESIAN NETWORKS FOR REGRESSION FROM INCOMPLETE DATABASES*

In this paper we address the problem of inducing Bayesian network models for regression from incomplete databases. We use mixtures of truncated exponentials (MTEs) to represent the joint distribution in the induced networks. We consider two particular Bayesian network structures, the so-called na¨ıv...

詳細記述

書誌詳細
主要な著者: Fernández, Antonio, Nielsen, Jens D., Salmerón Cerdán, Antonio
フォーマット: info:eu-repo/semantics/article
言語:English
出版事項: 2017
主題:
オンライン・アクセス:http://hdl.handle.net/10835/4887
https://doi.org/10.1142/S0218488510006398