Learning Mixtures of Truncated Basis Functions from Data

In this paper we investigate methods for learning hybrid Bayesian networks from data. First we utilize a kernel density estimate of the data in order to translate the data into a mixture of truncated basis functions (MoTBF) representation using a convex optimization technique. When utilizing a kerne...

Full description

Bibliographic Details
Main Authors: Langseth, Helge, Nielsen, Thomas D., Pérez-Bernabé, Inmaculada, Salmerón Cerdán, Antonio
Format: info:eu-repo/semantics/article
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10835/4894
https://doi.org/10.1016/j.ijar.2013.09.012