Effect of Temperature on Life History and Parasitization Behavior of Trichogramma achaeae Nagaraja and Nagarkatti (Hym.: Trichogrammatidae)

Trichogramma achaeae Nagaraja and Nagarkatti (Hymenoptera: Trichogrammatidae) is currently used as biological control agent for several lepidopteran pests. Knowledge of thermal requirements is essential to optimize its rearing procedures and inundative releases. The biological characteristics and tw...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Pino, Modesto del, Ramón Gallego, Juan, Hernández Suárez, Estrella, Cabello García, Tomás
Format: info:eu-repo/semantics/article
Sprache:English
Veröffentlicht: MDPI 2020
Schlagworte:
Online Zugang:http://hdl.handle.net/10835/8417
Beschreibung
Zusammenfassung:Trichogramma achaeae Nagaraja and Nagarkatti (Hymenoptera: Trichogrammatidae) is currently used as biological control agent for several lepidopteran pests. Knowledge of thermal requirements is essential to optimize its rearing procedures and inundative releases. The biological characteristics and two-sex life table parameters of T. achaeae were determined at five constant temperatures (15, 20, 25, 30, and 35 °C) using Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs. T. achaeae was able to develop and survive from 15 °C to 30 °C, but not at 35 °C. Temperature significantly affected the preadult development time and adult longevity, decreasing when temperature increased from 15 °C to 30 °C. Temperature significantly altered the sex ratio, being female biased between 15 °C and 25 °C. Age-stage, two-sex life table analysis indicated that net reproductive rate (R0) was highest at 20 °C. Both the intrinsic rate of increase (r) and finite rate of increase (λ) increased with increasing temperature, while the mean generation time (T) decreased significantly. In addition, functional response of T. achaeae was studied, being significantly affected by temperature and host egg density, displaying a Holling type-I at 15 °C and a Holling type-II at 25 °C. The relevance of these results is discussed for the use of T. achaeae as biological control agent.