Differential operator for discrete Gegenbauer--Sobolev orthogonal polynomials: eigenvalues and asymptotics
We consider the following discrete Sobolev inner product involving the Gegenbauer weight $$(f,g)_S:=\int_{-1}^1f(x)g(x)(1-x^2)^{\alpha}dx+M\big[f^{(j)}(-1)g^{(j)}(-1)+f^{(j)}(1)g^{(j)}(1)\big],$$ where $\alpha>-1,$ $j\in \mathbb{N}\cup \{0\},$ and $M>0.$ Our main objective is to calculat...
Hlavní autoři: | , , , |
---|---|
Médium: | info:eu-repo/semantics/article |
Jazyk: | English |
Vydáno: |
2024
|
Témata: | |
On-line přístup: | http://hdl.handle.net/10835/15245 |