Fast factorisation of probabilistic potentials and its application to approximate inference in Bayesian networks

We present an efficient procedure for factorising probabilistic potentials represented as probability trees. This new procedure is able to detect some regularities that cannot be captured by existing methods. In cases where an exact decomposition is not achievable, we propose a heuristic way to c...

Cijeli opis

Bibliografski detalji
Glavni autori: Cano, Andrés, Gómez Olmedo, Manuel, Pérez-Ariza, Cora B., Salmerón Cerdán, Antonio
Format: info:eu-repo/semantics/article
Jezik:English
Izdano: 2017
Teme:
Online pristup:http://hdl.handle.net/10835/4885
https://doi.org/10.1142/S0218488512500110
Opis
Sažetak:We present an efficient procedure for factorising probabilistic potentials represented as probability trees. This new procedure is able to detect some regularities that cannot be captured by existing methods. In cases where an exact decomposition is not achievable, we propose a heuristic way to carry out approximate factorisations guided by a parameter called factorisation degree, which is fast to compute. We show how this parameter can be used to control the tradeoff between complexity and accuracy in approximate inference algorithms for Bayesian networks.