Differential operator for discrete Gegenbauer--Sobolev orthogonal polynomials: eigenvalues and asymptotics
We consider the following discrete Sobolev inner product involving the Gegenbauer weight $$(f,g)_S:=\int_{-1}^1f(x)g(x)(1-x^2)^{\alpha}dx+M\big[f^{(j)}(-1)g^{(j)}(-1)+f^{(j)}(1)g^{(j)}(1)\big],$$ where $\alpha>-1,$ $j\in \mathbb{N}\cup \{0\},$ and $M>0.$ Our main objective is to calculat...
Main Authors: | Littlejohn, Lance L., Mañas Mañas, Juan Francisco, Moreno Balcázar, Juan José, Wellman, Richard |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/15245 |
Similar Items
-
Classical Sobolev orthogonal polynomials: eigenvalue problem
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
by: Mañas Mañas, Juan Francisco, et al.
Published: (2020) -
Asymptotics for varying discrete Sobolev orthogonal polynomials
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
Sobolev Orthogonal Polynomials: Asymptotics and Symbolic Computation
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
The semiclassical-Sobolev orthogonal polynomials: a general approach
by: Costas-Santos, R.S, et al.
Published: (2017)